

Innovative Service Around the Globe

DATA SHEET

GENERAL PURPOSE CHIP RESISTORS RC1206 (Pb Free) 5%; 1%

SCOPE

This specification describes RC1206 series chip resistors with lead-free terminations made by thick film process.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO ORDERING CODE

CTC CODE

RCI206 X X X XX XXXX L (6)

(1) (2) (3) (4) (5)

(I) TOLERANCE

 $F = \pm 1\%$ $| = \pm 5\%$

(2) PACKAGING TYPE

R = Paper/PE taping reel

(3) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(4) TAPING REEL

- 07 = 7 inch dia. Reel
- 10 = 10 inch dia. Reel (not preferred)
- 13 = 13 inch dia. Reel

(5) RESISTANCE VALUE

5R6, 56R, 560R, 5K6, 56K, 22M.

(6) RESISTOR TERMINATIONS

L = Lead free terminations (pure Tin)

ORDERING EXAMPLE

The ordering code of a RCI206 chip resistor, value 56 Ω with ±1% tolerance, supplied in 7-inch tape reel is: RCI206FR-0756RL.

NOTE

- I. The "L" at the end of the code is only for ordering. On the reel label, the standard CTC will be mentioned an additional stamp "LFP"= lead free production.
- 2. Products with lead in terminations fulfil the same requirements as mentioned in this datasheet.
- 3. Products with lead in terminations will be phased out in the coming months (before July 1st, 2006)

MARKING

 RC1206
 E-24 series: 3 digits

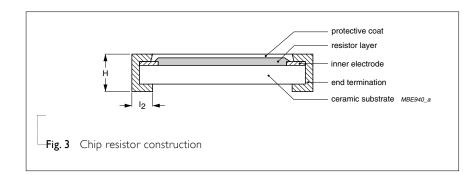
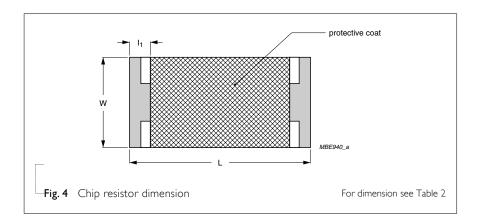

 Fig. 1
 Value=10 KΩ

 Fig. 2
 Value=10 KΩ

For marking codes, please see EIA-marking code rules in data sheet "Chip resistors instruction".

CONSTRUCTION


The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat and printed with the

resistance value. Finally, the two external terminations (pure Tin) are added. See fig. 3.

DIMENSIONS

Table 2	
TYPE	RC1206
L (mm)	3.10 ±0.10
W (mm)	1.60 ±0.10
H (mm)	0.55 ±0.10
l _l (mm)	0.45 ±0.20
l ₂ (mm)	0.40 ±0.20

- . . .

10

ELECTRICAL CHARACTERISTICS

Table 3		
CHARACTERISTICS RC120		
Operating Temperature Range	_55 ℃ to +155 ℃	
Maximum Working Voltage		200 V
Maximum Overload Voltage		400 V
Dielectric Withstanding Voltage		500 V
	5% (E24)	I Ω to 22 M Ω
Resistance Range	1% (E96)	I Ω to 10 $M\Omega$
	Zero Ohm Ju	umper < 0.05 Ω
Temperature Coefficient	$10 \Omega < R \le 10 M\Omega$	±100 ppm/°C
	$R \le 10 \Omega; R > 10 M\Omega$	±200 ppm/°C
lumper Criteria	Rated Current	2.0 A
Jumper Criteria	Maximum Current	10.0 A

FOOTPRINT AND SOLDERING <u>PROFILES</u>

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

ENVIRONMENTAL DATA

For material declaration information (IMDS-data) of the products, please see the separated info "Environmental data".

PACKING STYLE AND PACKAGING QUANTITY

Table 4 Packing style and packaging quantity

PRODUCT TYPE	PACKING STYLE	REEL DIMENSION	QUANTITY PER REEL
RC1206	Paper / PE Taping Reel (R)	7" (178 mm)	5,000 units
		10" (254 mm) / not preferred	10,000 units
		13" (330 mm)	20,000 units

NOTE

1. For Paper/PE tape and reel specification/dimensions, please see the special data sheet "Packing" document.

Chip Resistor Surface MountRCSERIES1206 (Pb Free)

FUNCTIONAL DESCRIPTION

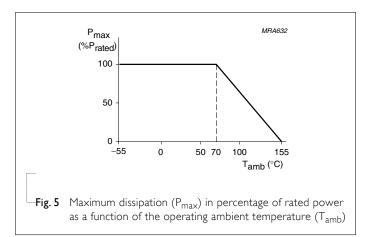
POWER RATING

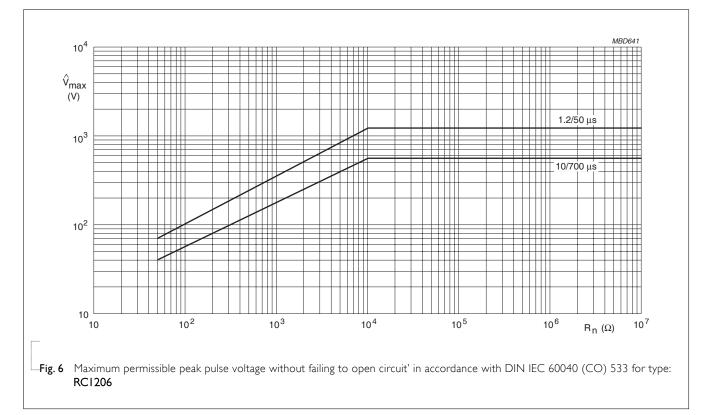
RCI206 rated power at 70°C is I/4 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

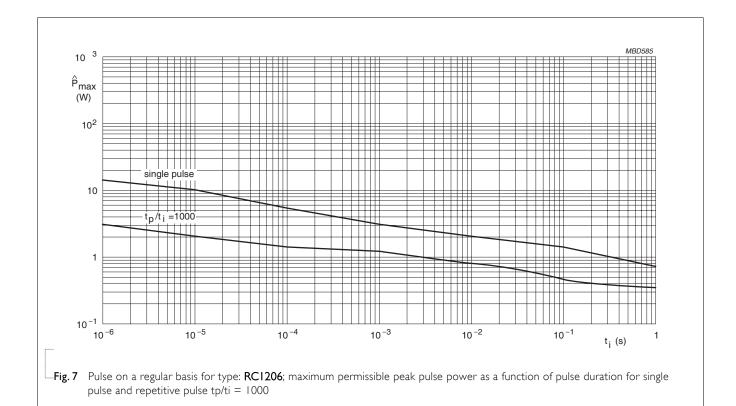
 $V=\sqrt{(P \times R)}$

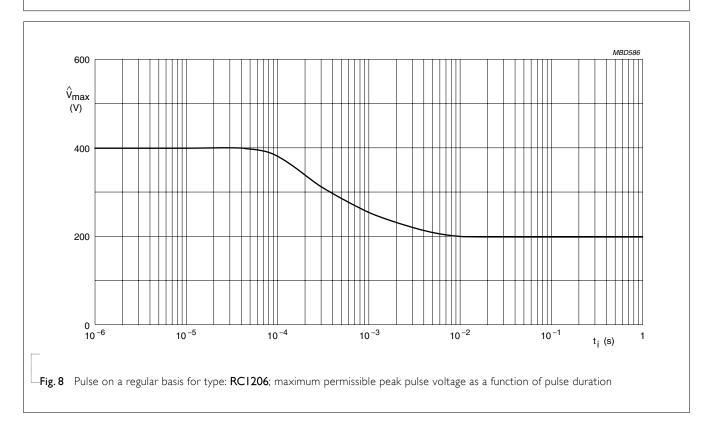

Where


V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

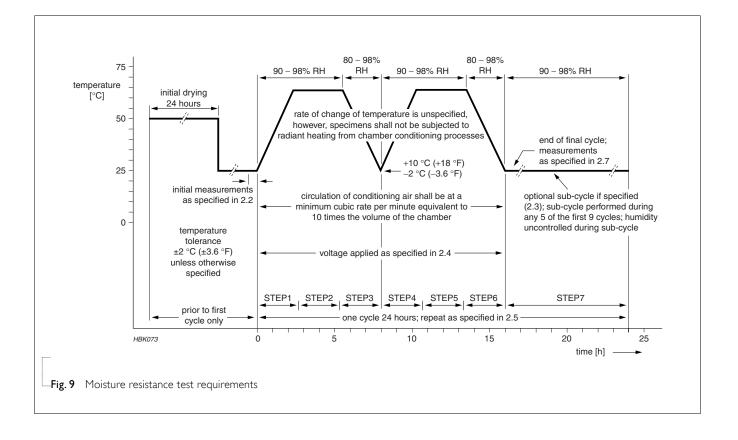

PULSE LOADING CAPABILITIES



Chip Resistor Surface Mount RC SERIES 1206 (Pb Free)

YAGEO

TESTS AND REQUIREMENTS


Table 4 Test condition, procedure and requirements

MIL-STD-202F-method 304; JIS C 5202-4.8	At +25/–55 °C and +25/+125 °C	Refer to table 3
IIS C 5202-4.8		
,	Formula:	
	T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
	Where	
	R ₂ =resistance at test temperature in ohms	
MIL-STD-202F-method 107G;	At65 (+0/-10) °C for 2 minutes and at +155	±(0.5%+0.05 Ω) for 1% tol.
IEC 60115-1 4.19	(+10/–0) °C for 2 minutes; 25 cycles	±(1.0%+0.05 Ω) for 5% tol.
		· · · ·
MIL-R-55342D-Para 4.7.4	At –65 (+0/–5) °C for I hour; RCWV applied	$\pm(0.5\%{+}0.05~\Omega)$ for 1% tol .
	for 45 (+5/–0) minutes	$\pm (1.0\% {+} 0.05~\Omega)$ for 5% tol.
		No visible damage
MIL-R-55342D-Para 4.7.5;	2.5 × RCWV applied for 5 seconds at room	±(1.0%+0.05 Ω) for 1% tol.
IEC 60115-1 4.13	temperature	\pm (2.0%+0.05 Ω) for 5% tol.
		No visible damage
MIL-STD-202F-method 302;	RCOV for 1 minute	≥10 GΩ
IEC 60115-1 4.6.1.1	Type RC1206	
	Voltage (DC) 400 ∨	
MIL-STD-202E-method 301	Maximum voltage (V) applied for L minute	No breakdown or flashover
	71	
	Voltage (AC) 500 V _{rms}	
MIL-STD-202F-method 210C;	Unmounted chips; 260 \pm 5 °C for 10 \pm 1 seconds	±(0.5%+0.05 Ω) for 1% tol.
IEC 60115-1 4.18		$\pm (1.0\% \pm 0.05 \Omega)$ for 5% tol.
		No visible damage
MII-STD-202E-method 1084.	At 70+2 °C for 1 000 hours: RCVAV applied for	±(1%+0.05 Ω) for 1% tol.
	1.5 hours on and 0.5 hour off	$\pm (1\% + 0.05 \Omega)$ for 5% tol.
	IEC 60115-1 4.19 MIL-R-55342D-Para 4.7.4 MIL-R-55342D-Para 4.7.5; IEC 60115-1 4.13 MIL-STD-202F-method 302; IEC 60115-1 4.6.1.1 MIL-STD-202F-method 301; IEC 60115-1 4.6.1.1	Where $t_1=\pm 25$ °C or specified room temperature $t_2=-55$ °C or ± 125 °C test temperature R_1=resistance at reference temperature in ohms R_2=resistance at test temperature in ohmsMIL-STD-202F-method 107G; IEC 60115-1 4.19At -65 (±0/-10) °C for 2 minutes and at ±155 (±10/-0) °C for 2 minutes; 25 cyclesMIL-R-55342D-Para 4.7.4At -65 (±0/-5) °C for 1 hour; RCWV applied for 45 (±5/-0) minutesMIL-R-55342D-Para 4.7.5; IEC 60115-1 4.132.5 × RCWV applied for 5 seconds at room temperatureMIL-STD-202F-method 302; IEC 60115-1 4.6.1.1RCOV for 1 minute TypeMIL-STD-202F-method 301; IEC 60115-1 4.6.1.1Maximun voltage (V _{rms}) applied for 1 minute TypeMIL-STD-202F-method 301; IEC 60115-1 4.6.1.1Maximun voltage (V _{rms}) applied for 1 minute TypeMIL-STD-202F-method 201C; IEC 60115-1 4.18Unmounted chips; 260 ±5 °C for 10 ±1 secondsMIL-STD-202F-method 108A;At 70±2 °C for 1,000 hours; RCWV applied for

Chip Kesistor Surface Mount RC SE	RIES 1206 (Pb Free)
--	---------------------

ST	TEST METHOD PROCEDURE		TEST METHOD PROCEDURE REQUIREMENTS			NTS	
Solderability	MIL-STD-202F-method 208A;	Solder bath at 245±3 °C	Well tinned (≥95% cove	ered)			
	IEC 60115-1 4.17	Dipping time: 2±0.5 seconds	No visible damage				
Bending	JIS C 5202.6.14;	Resistors mounted on a 90 mm glass epoxy	±(1.0%+0.05 Ω) for 1% tol. ±(1.0%+0.05 Ω) for 5% tol. No visible damage				
Strength	IEC 60115-1 4.15	resin PCB (FR4)					
		Bending: 5 mm					
Resistance to	MIL-STD-202F-method 215;	Isopropylalcohol (C ₃ H ₇ OH) or dichloromethane	No smeared				
Solvent	IEC 60115-1 4.29	(CH_2Cl_2) followed by brushing					
Noise	JIS C 5202 5.9;	Maximum voltage (V _{ms}) applied.	Resistors range	Valu			
	IEC 60115-1 4.12		R < 100 Ω	10 d			
			$100 \ \Omega \leq R < 1 \ K\Omega$	20 d			
			$ K\Omega \le R < 0 K\Omega$	30 d			
			$10 \text{ K}\Omega \leq \text{R} < 100 \text{ K}\Omega$	40 d			
			$100 \text{ K}\Omega \leq \text{R} < 1 \text{ M}\Omega$	46 d			
			$ M\Omega \le R \le 22 M\Omega$	48 d			
Humidity	JIS C 5202 7.5;	I,000 hours; 40±2 °C; 93(+2/–3)% RH	±(0.5%+0.05 Ω) for 1%	á tol.			
Humidity (steady state)	JIS C 5202 7.5; IEC 60115-8 4.24.8	I,000 hours; 40±2 °C; 93(+2/–3)% RH RCWV applied for I.5 hours on and 0.5 hour off	±(0.5%+0.05 Ω) for 1% ±(2.0%+0.05 Ω) for 5%				
•	-						
(steady state)	IEC 60115-8 4.24.8	RCWV applied for 1.5 hours on and 0.5 hour off	±(2.0%+0.05 Ω) for 5%				
(steady state) Leaching Intermittent	IEC 601 15-8 4.24.8 EIA/IS 4.13B;	RCWV applied for 1.5 hours on and 0.5 hour off Solder bath at 260±5 °C Dipping time: 30±1 seconds At room temperature; 2.5 × RCWV applied for	±(2.0%+0.05 Ω) for 5%	ó tol.			
(steady state) Leaching	IEC 60115-8 4.24.8 EIA/IS 4.13B; IEC 60115-8 4.18	RCWV applied for 1.5 hours on and 0.5 hour off Solder bath at 260±5 °C Dipping time: 30±1 seconds	±(2.0%+0.05 Ω) for 5%	5 tol.			
(steady state) Leaching Intermittent	IEC 60115-8 4.24.8 EIA/IS 4.13B; IEC 60115-8 4.18	RCWV applied for 1.5 hours on and 0.5 hour off Solder bath at 260±5 °C Dipping time: 30±1 seconds At room temperature; 2.5 × RCWV applied for 1 second on and 25 seconds off; total 10,000	\pm (2.0%+0.05 Ω) for 5% No visible damage \pm (1.0%+0.05 Ω) for 1%	5 tol.			
(steady state) Leaching Intermittent Overload Resistance to Vibration Moisture	IEC 601 15-8 4.24.8 EIA/IS 4.13B; IEC 601 15-8 4.18 JIS C 5202 5.8	RCWV applied for 1.5 hours on and 0.5 hour off Solder bath at 260±5 °C Dipping time: 30±1 seconds At room temperature; 2.5 × RCWV applied for I second on and 25 seconds off; total 10,000 cycles	\pm (2.0%+0.05 Ω) for 5% No visible damage \pm (1.0%+0.05 Ω) for 1%	5 tol. 5 tol. 5 tol.			
(steady state) Leaching Intermittent Overload Resistance to Vibration	IEC 601 15-8 4.24.8 EIA/IS 4.13B; IEC 601 15-8 4.18 JIS C 5202 5.8 On request	RCWV applied for 1.5 hours on and 0.5 hour off Solder bath at 260±5 °C Dipping time: 30±1 seconds At room temperature; 2.5 × RCWV applied for 1 second on and 25 seconds off; total 10,000 cycles On request	\pm (2.0%+0.05 Ω) for 5% No visible damage \pm (1.0%+0.05 Ω) for 1% \pm (2.0%+0.05 Ω) for 5%	5 tol. 5 tol. 5 tol. tol.			

YAGEO

 Chip Resistor Surface Mount
 RC
 SERIES
 1206 (Pb Free)

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 2	Sep 03, 2004	-	- Test method and procedure updated
			- PE tape added (paper tape will be replaced by PE tape)

